KNOTS WITH DISTINCT PRIMITIVE/PRIMITIVE AND PRIMITIVE/SEIFERT REPRESENTATIVES
نویسندگان
چکیده
منابع مشابه
On Sums of Distinct Representatives
Clearly (1) has an SDR provided that |Ai| > i for all i = 1, · · · , n, in particular an SDR of (1) exists if |A1| = · · · = |An| > n or 0 < |A1| < · · · < |An|. Let G be an additive abelian group and A1, · · · , An its subsets. We associate any SDR (2) of (1) with the sum ∑n i=1 ai and set (4) S({Ai}i=1) = S(A1, · · · , An) = {a1 + · · ·+ an : {ai}i=1 forms an SDR of {Ai}i=1} . Of course, S(A1...
متن کاملSystems of Distinct Representatives and Linear Algebra *
So me purposes of thi s paper are: (1) To take se riously the term , " term rank. " (2) To ma ke an issue of not " rea rra nging rows a nd colu mns" by not "a rranging" the m in the firs t place. (3) To promote the nu merica l use of Cra mer 's rul e. (4) To ill us tra te that the re levance of " numbe r of s teps" to "a mount of wo rk" depends on the amount of work in a step. (5) To ca ll a tt...
متن کاملSlice Knots with Distinct Ozsváth-szabó and Rasmussen Invariants
As proved by Hedden and Ording, there exist knots for which the Ozsváth-Szabó and Rasmussen smooth concordance invariants, τ and s, differ. The Hedden-Ording examples have nontrivial Alexander polynomials and are not topologically slice. It is shown in this note that a simple manipulation of the Hedden-Ording examples yields a topologically slice Alexander polynomial one knot for which τ and s ...
متن کاملTransversals, systems of distinct representatives, mechanism design, and matching
A transversal generated by a system of distinct representatives (SDR) for a collection of sets consists of an element from each set (its representative) such that the representative uniquely identifies the set it belongs to. Theorem 1 gives a necessary and sufficient condition that an arbitrary collection, finite or infinite, of sets, finite or infinite, have an SDR. The proof is direct, short....
متن کاملLissajous Knots and Knots with Lissajous Projections
Knots in R which may be parameterized by a single cosine function in each coordinate are called Lissajous knots. We show that twist knots are Lissajous knots if and only if their Arf invariants are zero. We further prove that all 2-bridge knots and all (3, q)-torus knots have Lissajous projections.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Knot Theory and Its Ramifications
سال: 2012
ISSN: 0218-2165,1793-6527
DOI: 10.1142/s0218216511009625