KNOTS WITH DISTINCT PRIMITIVE/PRIMITIVE AND PRIMITIVE/SEIFERT REPRESENTATIVES

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Sums of Distinct Representatives

Clearly (1) has an SDR provided that |Ai| > i for all i = 1, · · · , n, in particular an SDR of (1) exists if |A1| = · · · = |An| > n or 0 < |A1| < · · · < |An|. Let G be an additive abelian group and A1, · · · , An its subsets. We associate any SDR (2) of (1) with the sum ∑n i=1 ai and set (4) S({Ai}i=1) = S(A1, · · · , An) = {a1 + · · ·+ an : {ai}i=1 forms an SDR of {Ai}i=1} . Of course, S(A1...

متن کامل

Systems of Distinct Representatives and Linear Algebra *

So me purposes of thi s paper are: (1) To take se riously the term , " term rank. " (2) To ma ke an issue of not " rea rra nging rows a nd colu mns" by not "a rranging" the m in the firs t place. (3) To promote the nu merica l use of Cra mer 's rul e. (4) To ill us tra te that the re levance of " numbe r of s teps" to "a mount of wo rk" depends on the amount of work in a step. (5) To ca ll a tt...

متن کامل

Slice Knots with Distinct Ozsváth-szabó and Rasmussen Invariants

As proved by Hedden and Ording, there exist knots for which the Ozsváth-Szabó and Rasmussen smooth concordance invariants, τ and s, differ. The Hedden-Ording examples have nontrivial Alexander polynomials and are not topologically slice. It is shown in this note that a simple manipulation of the Hedden-Ording examples yields a topologically slice Alexander polynomial one knot for which τ and s ...

متن کامل

Transversals, systems of distinct representatives, mechanism design, and matching

A transversal generated by a system of distinct representatives (SDR) for a collection of sets consists of an element from each set (its representative) such that the representative uniquely identifies the set it belongs to. Theorem 1 gives a necessary and sufficient condition that an arbitrary collection, finite or infinite, of sets, finite or infinite, have an SDR. The proof is direct, short....

متن کامل

Lissajous Knots and Knots with Lissajous Projections

Knots in R which may be parameterized by a single cosine function in each coordinate are called Lissajous knots. We show that twist knots are Lissajous knots if and only if their Arf invariants are zero. We further prove that all 2-bridge knots and all (3, q)-torus knots have Lissajous projections.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Knot Theory and Its Ramifications

سال: 2012

ISSN: 0218-2165,1793-6527

DOI: 10.1142/s0218216511009625